Activation of single neurons in the rat nucleus accumbens during self-stimulation of the ventral tegmental area.
نویسندگان
چکیده
Single neurons (n = 76) were recorded in the nucleus accumbens septi (NAS) of rats self-stimulating the ipsilateral medial forebrain bundle (MFB) at the level of the ventral tegmental area (VTA). Responses evoked by rewarding trains of stimulus pulses fell into five categories. The first category (40% of the sample) was characterized by a single discharge at invariant latency in response to individual pulses of the train, and hence was termed "tightly time locked" (TTL). Two TTL neurons were collision tested, and both showed collision, suggesting that self-stimulation of the VTA may involve antidromic, and thus direct, activation of a substantial number of NAS axons. The second category (26%) was characterized by discharges that varied in latency from pulse to pulse and hence was termed "loosely time locked" (LTL). Responses of the remainder of the sample showed no coupling to individual pulses but were categorized based on general firing patterns during the train: excited (7%), inhibited (4%), and no change (23%). Irrespective of category, immediately after the self-stimulation session, the likelihood of evoked discharge at monosynaptic latency by single pulse stimulation of the ipsilateral fimbria was reduced (relative to pre-session level), concurrent with elevations in mean firing rate and motor activity. NAS neurons thus exhibit vigorous activation, apparently both antidromically and orthodromically, in response to VTA self-stimulation. The responses of certain LTL and TTL neurons increased as a function of pulse number in the train, suggestive of integrative mechanisms important for brain stimulation reward. Conduction velocities of directly activated (TTL) axons (0.41-0.65 m/sec) were slower than those previously reported for first-stage, reward-relevant axons. Nonetheless, an implication of direct activation of NAS (and other MFB) axons is that rewarding stimulation triggers action potentials that could invade all axonal branches, including those between the stimulation site and the soma, and send synaptic signals to target neurons. Such signals from NAS neurons could contribute to the increased motor behavior accompanying MFB self-stimulation, and/or could interact with dopamine-mediated signals projected to the NAS from reward circuitry.
منابع مشابه
Functional Interaction between the Shell Sub-Region of the Nucleus Accumbens and the Ventral Tegmental Area in Response to Morphine: an Electrophysiological Study
This study has examined the functional importance of nucleus accumbens (NAc)-ventral tegmental area (VTA) interactions. As it is known, this interaction is important in associative reward processes. Under urethane anesthesia, extracellular single unit recordings of the shell sub-region of the nucleus accumbens (NAcSh) neurons were employed to determine the functional contributions of the VTA to...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملMDMA Abuse in Relation to MicroRNA Variation in Human Brain Ventral Tegmental Area and Nucleus Accumbens
Aim 3,4-methylenedioxymethamphetamine (MDMA) is one of the most widespread illegal drugs, used particularly by young people in the 15-34 age group. MicroRNAs (miRNAs) are endogenously synthesized, non-coding and small RNAs that post-transcriptionally regulate their target genes’ expression by inhibiting protein translation or degradation. miRNAs are increasingly implicated in drug-related...
متن کاملChemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area.
Dual-probe microdialysis (with HPLC and electrochemical detection) in freely moving rats and single-unit recording in anesthetized rats were used to study the extent to which impulse flow through the ventral tegmental area (VTA) contributes to elevations in nucleus accumbens (NAS) dopamine (DA) evoked by stimulation of the ventral subiculum (VS). During perfusion of artificial extracellular flu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 1 شماره
صفحات -
تاریخ انتشار 1993